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Phase Shifts of Electron-Atom Scattering Using  
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Abstract— This study deals with the non-relativistic J-matrix method in quantum scattering theory. The method is investigated for a class 
of short range scattering potentials (Yukawa, Hulthén, and Exponential-Cosine Screened Coulomb), and in two different L2 basis (Laguerre 
and Gaussian) for elastic electron-atom scattering problem. The results of the scattering phase shifts non-relativistic case for this class of 
potentials are shown to be reasonable compared to analytical results.  

 

Index Terms—Electron-Atom Scattering , Exponential-Cosine Screened Coulomb potential, Hulthén potential, J-Matrix Method , Phase 
Shift , Short Range Potentials, and Yukawa potential . 

 

——————————      —————————— 

1 INTRODUCTION                                                                     
ost of the computational efforts for describing electron 
scattering have concentrated on quantal methods. The 
numerical methods used in electron scattering generally 

falls into one of two categories, namely perturbation-series 
expansions based on variations of Born series or the non-
perturbative close-coupling approach originating from the 
expansion of the trial wavefunction into a set of basis func-
tions. [1] 
 Typically, Born- series expansions (Born approximation, dis-
torted wave approximation…) [2] used successfully for high 
collision energies where the projectile-target interaction is a 
relatively small perturbation of the free-particle motion with 
large kinetic energy. On the other hand, close-coupling expan-
sions were applied to simulate low-energy collision where the 
incident energy is such that only elastic scattering, or at most 
excitation of few low-lying target states is possible. However, 
this method may be extended to deal with higher collision 
energies. 
Close-coupling expansions can be generalized to a relativistic 
framework, and the collision problem essentially consists of 
finding the solution to this system. This can be achieved by 
various iterative, noniterative, or algebraic methods such as R-
matrix, and J-matrix. [1, 3]. 

 
 

The J-matrix theory of quantum scattering is an algebraic 
method which exploits the fact that the unperturbed reference 

Hamiltonian can be tridiagonalized in a certain complete set of  
(L2) basis functions. The resulting symmetric three-term recur-
sion relation for the expansion coefficients of the unperturbed 
wave function is solved in terms of appropriate orthogonal 
polynomials. The method yields exact scattering information 
over a continuous range of energy for a model potential ob-
tained by truncating the given short-range potential in a finite 
subset of this basis [4].  

 
 This method has been applied successfully to a large number 
of problems. It is shown to be free from the fictitious reso-
nances that plague some algebraic variational scattering 
methods. The group-theoretical foundation of the theory has 
been exploited to account for the class of analytic potentials 
that are compatible with the formalism. 

2   Potential Models  
In our calculations we consider a class of short range poten-
tials which are exponentially small in the asymptotic domain 

( ) ( ) , 0 ,rV r O e for r                (1) 
Through our consideration, it will be applicable to most of the 
potentials belonging to this class. We will illustrate our calcu-
lations by considering three specific potentials in detail [5]. 
Those potentials are the Yukawa potential, 

( ) exp( ) /V r Z r r                                          (2) 
The Exponential-Cosine Screened Coulomb potential, 

( ) exp( ) cos( ) /V r Z r r r                               (3) 

And Hulthén potential, 
( ) exp( ) / (1 exp( ))V r Z r r                         (4) 

 Those potentials have the behavior  
( ) 1 /V r r�  for 0r                                          (5) 

And are exponentially small in the r   limit, 
Where  
Z : is the atomic number.  
  : is the screening parameter ( 1 3 , 0.97o oZ     ) [6]. 
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r  : is relative distance between the target and the projectile. 

 
 Figure (1) shows the behavior of this class of potentials as a 
function of  r . It is clear that for 0r  this class of potentials 
behaves like a Coulomb potential, whereas for large values of  
r  they decrease exponentially [5,7]. 
 

    
                         

3 CALCULATION METHOD 
The basic approach of the J-matrix method is to treat an un-
coupled Hamiltonian ( oH ) exactly in the space spanned by the 
complete ( 2L )  basis, in atomic and nuclear scattering. It is 
often desirable to use Laguerre or gauss functions as complete 
( 2L ) basis. This leads to a soluble Jacobi matrix. The properties 
of the Jacobi matrix representation of oH  in the 2( )L  basis 
play a central role in the J-matrix method. For this reason, this 
method is called the `Jacobi (or J -) matrix method` [8, 9, 10, 11, 
12]. 
 The remaining part of the Hamiltonian (i.e., the potential) is 
approximated approxV such that the resulting Hamiltoni-
an ( )approx

oH V is also exactly soluble in the complete ( 2L ) 
space. Then phase shifts can then be extracted from the result-
ing wave function E .  
 

2
( 2) 0/

E

N N
oH V k                                    (6) 

Where  
oH : is the partial-wave reference Hamiltonian expanded in 

complete ( 2L ) basis  
NV : is the approximated potential expanded in the basis    

The exact solution of the new     problem [3 ,8, 10, 12, 13, 14, 
15, 16] , i.e.,(equation 6) is:  

 
                                     
 

Which can be expanded in the basis         as: 
 
                               (7) 
 

Nt  is an approximation 
of the tangent of the sought phase shift   of the exact solu-
tion N

E
  of the eq(6) 

which is equivalent to: 
 
                                                                                                    (8) 
 
The solution has to satisfy the boundary condition 
 

/ 2 / 2sin( ) tan cos( ) ,N

E Nkr l kr l as r        
 
The left-hand side projection of Eq. (6) onto the basis       gives 
then infinitely equations depending on n . 
 
                                                                                                      (9) 
 
 Schematically, these equations look like 
 
 
 
 
 
                                                                                                      (10)                          
                                                                                                                               
 
 
 
 
 
 
 
Equation (9) imposes a restriction on        
for each 
 
 
 
 
 
 
 
 
 
 
 
     
Notice that the large N N  block of the coefficient matrix is 
composed of the matrix elements of 2( )2/N

oH V k   in the 

 
Fig. 1.  The behavior of Yukawa, Hulthén and Exponential-Cosine 
Screened  Coulomb potentials as a function of r , compared to 
coulomb potential. 
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first  N  basis functions. 
To perform a calculation, we need merely augment this 
N N   matrix with the extra row and column shown and 

with the right-hand side driving term. Equation (10) can be 
immediately solved for t by standard techniques. An illumi-
nating formula for  tan t   can be obtained by prediagonaliz-
ing the inner N N matrix 2( )2/N

oH V k  , with the energy-
independent transformation  , where 
 
 
                                                                                             (11) 
 
 
Where                                                           with the matrix   
diagonalizing the finite-dimensional problem  
 
   † † 2( ( ) ) ( )/ 2 m n m m noP H V P E Ek         .[4, 8, 12, 16, ,17] 

4 RESULTS AND DISCUSION 
In order to visualize the effect of increasing the number of 
base N (i.e. N   ) on the phase shift value  , it is necessary 
to plot the phase shift   versus the number of basis N  to 
show that as the number of basis increase N (i.e. N   ) ,the 
phase shift  (i.e. Nt ) converges to correct value (i.e. 

tant   as N   ) . 
The values of the parameters used in the numerical computa-
tions are the energy of the projectile electron e=1 Hartree, po-
tential truncation (cut-off parameter) or =1 a.u, atomic number 
of the target atom Z =1,  potential screening parameter  =1,  
base function scaling parameter =1, numbers of base func-
tions N extend from 1  to 550 , and orbital angular quantum 
number l = 0,1 . 
Since the phase shift has been calculated by using J-matrix 
method for Coulomb potential and they are identical to the 
analytical results [14, 12, 17], so taking 0r   the phase shift 
of this class of potentials using J-matrix method should con-
verges to that of Coulomb calculated by the same method,  
Table (I) shows the value of the phase shift for this class of 
potentials compared to the Coulomb potential for the same 
energy (Z=1,λ=1,κ=1,e=1Hartree, gauss basis ,N=50, or =0.0001 
a.u.) 
Figures (2.a), and (2.b) illustrate the nonrelativistic phase shift 
convergence using Laguerre and Gauss basis function respec-
tivelly to truncate the potential Hulthén for l  =0 and 1.  
The figures show the effect of increasing the number of basis  
N  on the phase shift value N   such that as the number of 

basis increase the accuracy of the phase shift increase and the 
convergence become faster. 
For l =1 the convergence of phase shift value for Laguerre is 
faster than that for l =0 especially for N > 50, while for Gauss 
it convergence at  N < 100. 
One can notice that the convergence in Laguerre basis set has 
completely different nature if compared to convergence in 
Gaussian set. The convergence in Laguerre set appears to be 
more stable and regular, but is slower. In Gaussian basis, we 
have rather a quick convergence, but the numerical results 
“jump” around the analytical result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figures (3.a), and (3.b)  illustrate the nonrelativistic phase shift 
convergence using Laguerre and Gauss basis function respec-
tivelly to truncate Exponential- cosine screened coulomb po-
tential for l  =0 and 1.  
The figures show the effect of increasing the number of basis  
N  on the phase shift value N  such that as the number of ba-

sis increase the accuracy of the phase shift increase and the 
convergence become faster. 
For l =1 the convergence of phase shift using Lagurre basis 
function is faster than that for l =0 especially for N < 75 which 
is the same number of Gauss basis function nedded to achive 
the convergence. 
One can notice that the convergence in Laguerre basis set has 
completely different nature if compared to convergence in 
Gaussian set. 

TABLE 1 
THE VALUE OF THE PHASE SHIFT FOR THIS CLASS OF POTENTIALS COM-

PARED TO THE COULOMB POTENTIAL FOR THE SAME ENERGY 
(Z=1,Λ=1,Κ=1,E=1HARTREE, GAUSS BASIS ,N=50, or =0.0001 A.U.) 

Potential Phase shift [rad] 
Coulomb 1.64294x10-10 
Yukawa 1.64291x10-10 
Hulthén 1.64291x10-10 

Exponential cosine 1.64293x10-10 
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 Fig.(2.a) Convergence of the non-relativistic phase shift versus number 
of Laguerre basis function used to truncate Hulthén potential ( l =0, 1) 
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For phase shift convergence in Yukawa  potential, figures  
(4.a) , and (4.b)  show  the nonrelativistic case using Laguerre 
and Gauss basis function to truncate the potential for l  =0 and 
1 recectivily .  
For l =1 the convergence of phase shift value is faster than that 
for l =0 especially for N < 50 unsing Lagurre while for Gauss 
basis function the convergence is  N < 50 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In general, in both investigated cases ( l =0 and 1) it is not dif-
ficult to see that phase shifts computed numerically converge 
to phase shift obtained using an analytical formula, the con-
vergence in this basis is rather slow but systematic. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.(2.b) Convergence of the non-relativistic phase shift versus num-
ber of Gauss basis function used to truncate Hulthén potential ( l =0, 
1). 

 
Fig.(3.a) Convergence of the non-relativistic phase shift versus num-
ber of Laguerre basis function used to truncate Exponential- cosine 
screened coulomb potential ( l =0, 1) 

 
Fig.(3.b) Convergence of the non-relativistic phase shift versus number 
of Gauss basis function used to truncate Exponential- cosine screened 
coulomb potential ( l =0, 1) 

 

 
Fig.(4.a) Convergence of the non-relativistic phase shift versus number 
of Laguerre basis function used to truncate Yukawa potential ( l =0, 1) 



International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013                                                                                         5 
ISSN 2229-5518   
 

IJSER © 2013 
http://www.ijser.org  

 

 

 

 

 

 

 

 

 

 

 
5. CONCLUSIONS 

Applying the J-matrix method to a class of short range poten-
tials for describing the scattering phenomena was the funda-
mental purpose of the work. For this purpose the JMATRIX 
program is modified and used to carry out numerical calcula-
tions for scattering phase shifts for potentials in the shape of 
the Yukawa potential, Hulthén potential and exponential-
cosine screened potential. Preformed calculations of scattering 
phase shifts show, that: 
The J-matrix method is an effective method for describing the 
scattering phenomena for any scattering potential vanishing 
faster than the Coulomb one given in analytical form (short 
range potential) and especially for this class of short range 
potentials(Yukawa potential, Hulthén potential and exponen-
tial-cosine screened potential), 
The convergence in Laguerre basis set has completely different 
nature if compared to convergence in Gaussian set. The con-
vergence in Laguerre set appears to be more stable and regu-
lar, but is slower. In Gaussian basis, we have rather a quick 
convergence, but the numerical results `jump` around the ana-
lytical result. The difference between the Laguerre and Gauss-
ian basis is in the "r" The Gaussian basis squares the "r" [see 
table I] so the (r) dependence in the exponent in the Gaussian 
basis is a poorer representation than that of the Laguerre basis. 
Gaussian basis also falls off more rapidly with distance than 
Laguerre basis. These factors suggest that more Gaussian basis 
are needed to form a suitable basis set than Laguerre basis, 

roughly three times as many are needed to achieve the same 
accuracy, 
As the angular momentum quantum number l  increases, the  
convergence of the scattering phase shift values become faster 
in both Laguerre and Gaussian basis  because this increasing 
makes the basis decay faster due to the (r) dependence in the 
exponent in the both basis,  
As the angular momentum quantum number l  increases, the 
effect of the repulsive centrifugal potential increases and be-
come more dominants, so phase shift values decrease. 
The convergence of phase shift values for Hulthén potential 
are slower than those of Yukawa and Exponential Cosine-
Screened Coulomb potential because  the fall off of Hulthén 
potential is slower than that of the other potentials. 
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Fig.(4.b) Convergence of the non-relativistic phase shift versus 
number of Gauss basis function used to truncate Yukawa potential 
( l =0, 1) 


